
Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

1 of 14

N A V I G AT I O N

ANYmal parkour: Learning agile navigation for
quadrupedal robots
David Hoeller1,2*†, Nikita Rudin1,2*†, Dhionis Sako1, Marco Hutter1

Performing agile navigation with four-legged robots is a challenging task because of the highly dynamic motions,
contacts with various parts of the robot, and the limited field of view of the perception sensors. Here, we propose
a fully learned approach to training such robots and conquer scenarios that are reminiscent of parkour challenges.
The method involves training advanced locomotion skills for several types of obstacles, such as walking, jumping,
climbing, and crouching, and then using a high-level policy to select and control those skills across the terrain.
Thanks to our hierarchical formulation, the navigation policy is aware of the capabilities of each skill, and it will
adapt its behavior depending on the scenario at hand. In addition, a perception module was trained to recon-
struct obstacles from highly occluded and noisy sensory data and endows the pipeline with scene understanding.
Compared with previous attempts, our method can plan a path for challenging scenarios without expert demon-
stration, offline computation, a priori knowledge of the environment, or taking contacts explicitly into account.
Although these modules were trained from simulated data only, our real-world experiments demonstrate success-
ful transfer on hardware, where the robot navigated and crossed consecutive challenging obstacles with speeds
of up to 2 meters per second.

INTRODUCTION
Parkour, also known as free running, is a discipline originating in
the late 1980s that has gained popularity with the advent of the in-
ternet. Free runners perform acrobatic stunts where the goal is to
attain a hard-to-reach location in the most elegant and efficient
manner. It involves navigating through the environment by walking,
running, climbing, and jumping over obstacles, and the athlete must
coordinate these agile skills in a precisely timed sequence. This dis-
cipline requires years of practice to develop the necessary compe-
tencies, intuitions, and reflexes.

Although legged robots aspire to be as nimble and agile as hu-
mans or other animals, we are still far from fully exploiting robotic
capabilities to achieve similar behaviors. By aiming to match the
agility of free runners, we can better understand the limitations of
each component in the pipeline from perception to actuation, cir-
cumvent those limits, and generally increase the capabilities of our
robots, which in return paves the road for many new applications,
such as search and rescue in collapsed buildings or complex natural
terrains.

The complexity of the parkour task exacerbates many of the chal-
lenges commonly faced by mobile robots. The robot must sense its
environment to develop an understanding of the rapidly changing
surrounding scene and select a feasible path and sequence of mo-
tions based on its set of skills. In the case of large and challenging
obstacles, it has to perform dynamic maneuvers at the limits of ac-
tuation while accurately controlling the motion of the base and
limbs. All of the above must be achieved in real time with limited
onboard computing and using its exteroceptive sensors’ partial and
noisy information.

This work aims to solve the abovementioned challenges and pro-
poses a method to perform agile navigation with a quadrupedal robot

in parkour-like settings (Fig. 1). We split the pipeline into three inter-
connected components trained and deployed sim-to-real: a percep-
tion module, a locomotion module, and a navigation module (Fig. 2).
The perception module receives point cloud measurements from the
onboard cameras and the LiDAR (light detection and ranging) and
computes an estimate of the terrain around the robot. The locomo-
tion module contains a catalog of locomotion skills that can over-
come specific terrains. The navigation module guides the locomotion
module in the environment by selecting which skill to activate and
providing intermediate commands. Each of these learning-based
modules was trained in simulation.

In our experimental validation, we demonstrate the system’s abil-
ity to solve the problem autonomously, resulting in behaviors not
shown before with such platforms. The robot could cross difficult
terrains with speeds of up to 2 m/s and make the right navigation
decisions to reach the target in time. The locomotion controllers
performed precise and agile movements, sometimes on narrow box-
es barely the size of the robot’s footprint, and leveraged the system’s
full range of motion to pass higher obstacles. The mapping pipeline,
which provides updates at a high frequency, correctly reconstructed
the scene despite state estimation and sensing noise stemming from
the robot’s fast speeds. Last, the planner used the available informa-
tion and its intrinsic knowledge of each skill’s capabilities to guide
the robot around the course on a feasible path. All of these compo-
nents were designed with efficiency in mind. They scaled properly
when training with thousands of agents in simulation and operated
in real time on the real robot. We show that the complete pipeline
could be deployed sim-to-real and achieve high agility despite the
harsh conditions of the real world.

Related work
This work builds on state-of-the-art methods in locomotion, plan-
ning, and perception. Legged locomotion has been tackled by multi-
ple approaches ranging from model-based to fully learned techniques.
Model predictive control can be used to traverse challenging terrains
requiring precise foot placement (1–3), but the approach is limited by

1Robotic Systems Lab, ETH Zurich, Zurich, Switzerland. 2NVIDIA, Zurich, Switzerland.
*Corresponding author. Email: dhoeller@​nvidia.​com (D.H.); rudinn@​ethz.​ch
(N.R.)
†These authors contributed equally to this work.

Copyright © 2024 The
Authors, some rights
reserved; exclusive
licensee American
Association for the
Advancement of
Science. No claim to
original U.S.
Government Works

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

mailto:dhoeller@​nvidia.​com
mailto:rudinn@​ethz.​ch
http://crossmark.crossref.org/dialog/?doi=10.1126%2Fscirobotics.adi7566&domain=pdf&date_stamp=2024-03-13

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

2 of 14

the simplified underlying model and the strong assumptions about the
contact schedule. Deep reinforcement learning has proven to be an
effective solution for robust perceptive locomotion (4–6). Neverthe-
less, such approaches are still far from exploiting the full potential of
the robot. Agile locomotion has been of strong interest since the first

legged robots (7). In recent years, with the combined democratization
of commercially available quadrupedal platforms and openly available
deep reinforcement learning frameworks, various new tasks have
been demonstrated. Notable examples include jumping and climbing
(8–11), performing cat-like landing motions (12, 13), recovering from

Fig. 1. Deployment of the pipeline on the quadrupedal robot ANYmal D. The robot performs highly dynamic maneuvers and makes contact with its limbs where
necessary.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

3 of 14

falls (14, 15), and dribbling with a football (16, 17). In parallel, bipedal
robots have also demonstrated their agile capabilities by walking
blindly on rough terrain (18) and jumping on obstacles (19).

Navigation is typically achieved with a hierarchical setup, where
a planner computes a feasible and collision-free path, which a con-
troller then tracks. Although sampling-based methods are com-
monly used to create such a path (20), using these techniques with
legged robots is challenging because of the system’s hybrid nature.
The robot must constantly make and break contact with the envi-
ronment to influence its motion, which leads to the combinatorial
explosion of the set of possible solutions. As a result, the problem is
usually simplified to keep it tractable (21, 22). Arguably, learning-
based methods can break down such complexity and provide a more
straightforward way to guide the robot from point A to B. Previous
works have trained navigation policies from expert demonstration
(23, 24), using reinforcement learning (25–27), fully self-supervised
(28), or by combining sampling-based planning with learned mo-
tion costs (29).

Hierarchical reinforcement learning has gained attention in the
field of robotics because it enables robots to acquire, combine, and
reuse versatile skills to solve complex tasks. Pretraining low-level
skills with imitation learning and then controlling them through la-
tent actions have been proposed for both character animation (30)
and robotics (16). Combining multiple expert policies has also been
explored by switching between policies trained to imitate fragments
of motions (31), fusing locomotion policies with gating neural net-
works (32), or distillation (33).

To perceive the environment, navigation and locomotion pipe-
lines for legged robots heavily rely on elevation maps (1, 6, 34),
which are susceptible to noise and inaccurate state estimation. Such
perceptive representations, however, cannot represent the full three-
dimensional (3D) configuration of the world and cannot extrapolate
beyond visible data, which is necessary to pass below obstacles or to
reconstruct the top surfaces of higher obstacles. For navigation,
signed distance fields (35) are commonly used because they can eas-
ily be integrated into the problem formulation to avoid elements in

Fig. 2. Description of our approach. We decompose the problem into three components: The perception module receives the point cloud measurements to estimate
the scene’s layout and produces a latent tensor and a map. The locomotion module contains several low-level skills that can overcome specific scenarios. The navigation
module is given a target goal and uses the latent to plan a path and select the correct skill.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

4 of 14

the scene. The exteroceptive measurements can also be directly pro-
vided as input to the policy (5, 36). These methods, however, involve
multiple stages that provide direct supervision to the perceptive part.

In this work, we trained locomotion skills using the position-
based task formulation of (11). Similar to (31), the navigation mod-
ule then learned to steer and switch between those skills. For the
perception module, we took inspiration from (37) to reconstruct the
environment in 3D from point cloud data. We augmented the meth-
od with a multi-resolution scheme to combine a higher-resolution
map near the robot with a coarser larger-scale map further away.

RESULTS
We deployed the pipeline on the quadrupedal robot ANYmal D. It
weighs around 55 kg, has 12 series elastic actuators capable of pro-
ducing a torque of 85 N m each, and is equipped with a total of six
Intel RealSense depth cameras (two in the front, two in the back,
one left, and one right) and a Velodyne Puck LiDAR. The whole
system was implemented in several ROS nodes across different on-
board computers. The locomotion and navigation modules operated
synchronously in a single node on the onboard computer. The per-
ception module was implemented on an NVIDIA Jetson Orin and
operated asynchronously with the rest of the system. The navigation
and locomotion policies used the last received message from the
perception module to infer their respective networks. More details
on the setup are provided in Supplementary Methods “Implementa-
tion details.” Movie 1 summarizes the proposed approach and shows
indoor and outdoor experiments on the real robot.

The three learning-based modules operated without expert dem-
onstration, offline computation, or a priori knowledge of the envi-
ronment and enabled the robot to reliably reach a target across
different arrangements of randomized obstacles. Figure 3 shows two
trajectories and the corresponding profiles of the robot’s speed, the
selected skills, and the joint positions and torques for one of the leg’s
hip flexion-extension (HFE) and knee flexion-extension (KFE) mo-
tors. The robot crossed the terrain swiftly and chose suitable skills at
every time step. It reached speeds of up to 2 m/s and underwent fast
accelerations and decelerations [Fig. 3, A(i) and B(i)]. The system
leveraged a large portion of the motor’s range and often reached
maximum torque. Along trajectory A, the HFE motor deflected by
more than 160° [Fig. 3A(ii)], which was necessary for the leg to
reach the other side of the gap and catch the fall of the robot during
the climb-down maneuver. In trajectory B, the policy saturated the

motor during the climb to propel the robot onto the 0.95-m-high
platform [Fig. 3B(iii)].

The system was able to control the robot precisely despite the
high speeds. In scenario A, the robot reached the leftmost box after
the stairs with a speed of 1.5 m/s. With a width of 0.8 m, the box was
smaller than the robot’s footprint in standing configuration. At this
location, it had to perform precise foothold placement to pass the
last step and prepare for the jump, despite the out-of-distribution
scenario for the jumping skill, which had been trained with boxes
double the size. This shows that the low-level skills could cope with
more intricate scenes than what they had been trained on.

In scenario B, the skill selection scheme of the navigation mod-
ule was nontrivial. At several locations along the path, it chose skills
that had not been designed for the specific setting at hand. It favored
the jumping skill to quickly turn the robot on the spot in the narrow
passages after the first step down or before the climb. This can be
explained by the jumping skill’s training setup, where it had to jump
from one box to another, and the initial and target headings were
randomized. The policy learned to turn on the spot in tight spaces
and was more capable in such scenarios compared with other skills.
The navigation module was capable of discovering such strengths
during its training process and exploited them on deployment.

Although the skills were trained separately, the switches along tra-
jectories were unnoticeable on the real robot. This smoothness was
not enforced directly and can be explained by the following reasons.
First, a harsh transition would lead to a risky motion that the naviga-
tion module learned to avoid. Second, all of the skills were also trained
on flat ground without obstacles. They showed very similar motions
in these scenarios, which resulted in a skill overlap during switches.

The system could also recover from disturbances or crashes; see
movie S1. The robot stood up and completed the course after falling
from a box, and it could pass a table after heavily slipping due to low
ground friction. Moreover, the robot quickly readapted its trajectory
when obstacles were pulled away during execution, even though all the
components were trained with static environments only. This arose from
the rapid response times exhibited by each component, coupled with the
perception module’s adeptness at promptly rectifying discrepancies be-
tween its internal state of belief and current sensor measurements.

In the following analysis, we delve into each component of our
proposed approach, revealing how such behaviors can be effectively
achieved. All statistical results were computed by averaging over
1000 roll-outs in simulation.

Locomotion module
First, we analyzed the performance and emerging behavior of each
locomotion policy separately for a range of difficulties (Fig. 4). Mov-
ie S2 shows the deployment of each skill.

Jumping
The robot started on a box and had to jump to a neighboring box
separated by a gap of up to 1 m. To perform a successful jump, the
robot approached the gap sideways and carefully placed its feet as
close as possible to the edge before using the full actuation power to
leap to the other side. It used three legs to propel itself, whereas the
fourth was extended to land on the other side. The robot then trans-
ferred two diagonal legs before bringing the last leg across the gap.
Because of randomization, the policy kept the feet at a safe distance
from the edge and could recover from missteps and slippage by
transferring the robot’s weight between the non-leaping legs.Movie 1. Summary of experimental design and results.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

https://www.science.org/doi/10.1126/scirobotics.adi7566#vid1

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

5 of 14

Climbing down
The robot started on a box with a height of up to 1 m and had to
climb down to reach a target on the ground. Because we penalized
high impacts on its feet to prevent motor damage, the robot first

dropped to its knees on the edge and brought its center of gravity as
low as possible. It then jumped down to land on its front legs while
holding its weight with the back knees on top of the box. It then took
a few steps forward on the front legs to reposition itself and allow

B

A
Sp

ee
d

(m
/s

)

walk jump climb down climb up crouch HFE KFE

A(i) B(i)

A(ii) B(ii)

A(iii) B(iii)

Fig. 3. Deployment of the pipeline on the quadrupedal robot ANYmal D. (A) Trajectory on the real robot. (B) Trajectory in simulation. A(i to iii) and B(i to iii) depict the
profiles of the robot’s speed, the selected skills, and two joint angles and torques corresponding to (A) and (B), respectively.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

6 of 14

the back legs to come down gently. The policy learned to be robust
to small shifts in the perceived terrain by slowly pushing its feet over
the edge until it made contact with its knees. It then used the conve-
niently L-shaped shank and knees of the robot as a hook on the edge
of the box.

Climbing up
The robot started on the ground and had to climb on top of a box with
a height of up to 1 m. To climb to the top, the robot put one of its front
feet on the top surface and used it to lift itself to an upright configura-
tion. It then repositioned itself before jumping to land with a hind leg
on the top while balancing by pushing against the vertical surface
with the fourth leg. Last, it propelled the whole body up and brought
the fourth leg on top. The robot only used its feet and shanks when
possible, but it also learned to use its knees when needed. For exam-
ple, when the third leg slipped or missed the edge, the robot could use
its knee to recover without falling back to the ground.

Crouching
The robot had to reach a target located on the other side of a narrow
passage with a minimum height of 0.4 m. When it crossed the table,
the robot lowered its base while walking in the desired direction.
With a low base height, it adapted its gait and used both hip motors
to lift its feet off the ground.

Walking
The robot had to traverse various irregular terrains consisting of
stairs and slopes and randomly placed small obstacles. These diverse

terrains were similar to the ones widely used in perceptive-legged
locomotion works (4, 38). The policy could scale and descend short
slopes of 40°, climb steps of 0.25-m step height, and run on flat
ground at 2 m/s. Because of the diversity of training scenarios, this
policy generalized well to unseen terrains, such as narrow stairs,
slopes, or combinations of different obstacles.

Figure 4F shows the success rate of each skill across a range of
corresponding obstacles with increasing difficulty. The displayed
range covers 0 to 120% of the maximum obstacle difficulty during
training. All skills performed well up to 90% of their respective dif-
ficulty. After that, the crouching skill’s performance dropped the
quickest when the passage became narrower than the height of the
robot. The performance of the jumping, climbing, and climbing
down skills also dropped sharply because of the physical limits of
the robot. Last, the walking skill extrapolated well beyond the train-
ing range of difficulties because these terrains were less challenging.

Navigation module
The navigation module was trained in simulation on three different
terrain types presented in Fig. 5. Scenario C was introduced because
of the complexity of constructing scenario B in the real world. For that
setup, we had to add additional penalties to prevent the robot from
going around the obstacle course. Because of the different formula-
tions, we deployed two separate navigation policies, one trained on
scenarios A and B and a separate one trained on scenario C only.

We examined the emerging behaviors of the navigation module
(Figs. 3 and 6). It selected appropriate subgoals on the basis of its in-
stantaneous measurement of the terrain by extracting 3D information

Fig. 4. Training scenarios of the locomotion skills with the resulting behaviors. (A) Jumping. (B) Climbing down. (C) Climbing up. (D) Crouching. (E) Walking. (F) The
success rate of each skill for obstacles of varying difficulty. (G) Ranges of parameters used during training [0 to 100% in (F)].

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

7 of 14

from the latent space of the perception module. For similar environ-
ment configurations, it adapted the path depending on the obstacles’
dimensions. It also selected the most appropriate policy based on the
terrain and sent the right commands to control the robot’s trajectory.
Upon convergence, the navigation policy could fully control the five
locomotion skills across the course to solve the problem. This task was
not trivial because of the position-based formulation these policies
were trained with. Each low-level policy could modulate the robot’s
movement freely within the allocated time and only had to comply
with the position and heading commands when the time was over. For
example, it could comply with the orientation command at any time
along the trajectory. The navigation policy learned how to properly
combine the position, heading, and timing commands for each skill to

achieve the desired motion of the robot. This was particularly impor-
tant when the robot arrived at high speeds on a narrow obstacle.
There, it had to decelerate quickly and turn on the spot to get to the
next obstacle.

The navigation module took the capabilities and limitations of
each skill into account to adapt the trajectory. This was primarily
visible with the climb up, climb down, and crouch skills, where de-
pending on the configuration of the obstacle, it modified its output
(movies S3 and S4). When a box was too high, the policy did not go
up or down directly because it would have failed. For tables that
were too low, it climbed over them rather than crouching under-
neath. Such adaptation is depicted in Fig. 6, where the robot started
on the ground, was commanded to reach the target box in the back

Fig. 5. Types of environments used for training. The dimensions of the individual obstacles and the arrangements were randomized. (A) Different arrangements of
boxes, where the robot might have to climb and jump over a gap to reach the target. The robot had to reach any of the boxes starting from the ground or reach a target
on the ground starting from one of the boxes. (B) A parkour line consisting of a long winding platform with multiple obstacles on the way. (C) A simplified version of the
parkour line due to the complexity of implementing (B) in the real world.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

8 of 14

(up), and then go back to the starting position (down). In Fig. 6A,
we show how likely the robot was to take the direct path as a func-
tion of the height of the box. As the height of the box increased,
the policy was more likely to choose a longer but safer path. The
policy sent the robot down directly until a height of 1 m, after
which it chose the longer route. On the other hand, it switched
much more quickly to the longest route when going up, because
disturbances and noise have a higher impact on performance for
this maneuver.

Figure 6 (B and C) shows the resulting trajectories on the real
robot for h = 0.75 m, and Fig. 6 (D and E) for h = 1.15 m. Another
example where the robot had to distance itself from the target to
reach distant goals is described in Supplementary Results “Naviga-
tion across long ranges.”

We compared the performance of our method in simulation
against a manually designed trajectory (Table 1) for the different ter-
rains depicted in Fig. 5. For the manual trajectory, we used the
known sequence of obstacles to place suitable waypoints along the
way and set the most appropriate skill to connect neighboring way-
points. The robot was controlled to reach these waypoints in se-
quence. The obstacles’ difficulty was close to the maximum defined
during low-level training (100% in Fig. 4). The table shows that
manually placing targets performed well in certain scenarios but
failed in other cases where the locomotion policies required finer-
grained control. Moreover, our high-level policy learned to dynami-
cally adjust the targets by placing them further away to increase the
speed of the robot. Manual demonstrations with targets at key loca-
tions (such as in the middle of obstacles) led to lower speeds, thus

B CB
h = 0.75 m

h = 1.15 m
D E

A

0

80

60

40

20

direct path
selection
likelihood (%)

h

100

0.7 0.8 0.9 1.0 1.1 1.2 1.3
h (m)

down

up

C

B

E

D

Fig. 6. Adaptive path selection. The robot started on the ground, was given a target on top of the box in the back, and then commanded back to the initial position.
(A) Likelihood of going up and down along the direct path (red line) as a function of the height of the box. (B and C) Deployment on the robot for h = 0.75 m.
(D and E) Deployment on the robot for h = 1.15 m. The trajectories (B to E) are shown in movie S3.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

9 of 14

requiring a longer time to reach the target. Human demonstrations
did not scale well when randomizing the terrain because they re-
quired hand labeling of each new case.

Perception module
The perception module processed the noisy and occluded point
cloud measurements to produce a meaningful latent for the naviga-
tion module and a clean reconstruction for the locomotion module.
As mentioned earlier, the module operated asynchronously with the
rest of the system on deployment. This differed from our training
setup, where the latent was available to the navigation policy at the
exact time of inference. However, because the induced delay was
smaller than the update period of the policy, the performance was
unaffected.

We analyzed the reconstructions and compared them against an
elevation mapping baseline (39) that ran alongside our network.
This method provides several improvements to the commonly used
framework described in (40), making it a stronger contender for the
parkour task. It can detect drift in the z direction to realign the map
to the correct height and perform additional visibility checks to re-
move outliers. We mainly evaluated the reconstruction performance
qualitatively and refer the reader to (27) for a quantitative analysis of
a similar approach.

Several outputs of the network for scenarios Figs. 3A and 6D
(real-world data) are presented in Fig. 7 and in movie S5. The first
column corresponds to the measurements, the second to the base-
line map visualized as a point cloud, and the last to our reconstruc-
tion. Because the baseline was an elevation map, the corresponding
point cloud did not contain vertical surfaces. For better distinction,
the high-resolution (refinement process around the robot) and low-
resolution outputs of our approach are colored in red and blue, re-
spectively. The coarse-resolution outputs (blue points) within the
red regions are only shown for comprehension and were not used by
the rest of the pipeline.

From the various outputs, it can be seen that the network could
cope with sparse measurements and correctly estimate the layout of
the scene. The points falling on the edge of the boxes were used as
evidence to reconstruct the upper parts at the right height (Fig. 7A).
The surface on the right of the robot was correctly identified as a
wall and reconstructed accordingly. On the other hand, the baseline
did not consider the regions on top of the higher boxes because no
measurements were available at these locations.

The coarse network produced less precise reconstructions further
away from the robot because of the lower resolution of the voxels and
noisy measurements along some of the obstacles’ edges. In Fig. 7A,
for example, the estimated height of the box to the left of the robot
was correct, but the width of approximately 8 cm was too large. How-
ever, near the robot, the refiner could deal with such inaccuracies

and further enhance the reconstruction. This can be seen in Fig. 7D,
where the refiner produced cleaner stairs than the coarse map. The
importance of the refiner is further described in Supplementary Re-
sults “Ablation of the perception refinement.”

The auto-regressive feedback played a key role when the robot
crouched under the table in Fig. 7C. Despite the sparsity of the mea-
surements on the top surface, the network remembered this region
because it could be seen during the approach in previous time steps.
The baseline method was not designed to handle such scenarios
with overhangs. It produced a mix containing the top surface at
some locations and the ground at others, resulting in an erro-
neous map.

The robustness of state estimation drift can be seen in Fig. 7 (B
and D) by comparing it with the baseline. In Fig. 7B, the robot’s
position estimate suddenly jumped to the left. Our network detected
such situations and immediately corrected the map. The elevation
map, on the other hand, could not cope with the drift, and the knees
of the robot and the hind leg were inside the map. Similarly, the hind
leg was inside the elevation map when climbing stairs (Fig. 7D).

DISCUSSION
This work aims to extend the capabilities of legged robots on highly
challenging terrains. We have presented a complete pipeline for ro-
botic parkour, including specially developed low-level locomotion
skills, a high-level navigation module, and a perception module. The
proposed approach allows the robot to move with unprecedented
agility. It can now evolve in complex scenes where it must climb and
jump on large obstacles while selecting a nontrivial path toward its
target location. The dynamic nature of the task poses multiple chal-
lenges that render existing approaches unsuitable. It requires non-
standard locomotion skills at the actuation limit, a planner with an
intrinsic understanding of the locomotion capabilities with respect
to the surrounding obstacles, and a perception module capable of
inferring the 3D topology of the terrain on the basis of the partial
observations provided by the sensors.

We propose a fully learned approach where each module uses
one or multiple neural networks. The networks are trained in simu-
lation and transferred to the real world. We demonstrate that our
task can be solved without premapping or offline planning, and all
required computations can happen on board the robot in real time.
Using learning-based modules is advantageous for real-world de-
ployment. The complexity of solving the task is shifted to the learn-
ing stage. Once the relatively small networks are trained, they
display complex behaviors at almost no cost compared with optimi-
zation or sampling-based methods, without resorting to limiting as-
sumptions or simplifications.

Our hierarchical approach with discrete skills differs from works
where multiple skills are distilled into a single low-level policy either
by direct imitation (33) or by encoding the skills into a latent space
(16). The distillation process could potentially lead to better gener-
alization and performance, but this remains to be shown. In the Bar-
kour benchmark (33), for example, the distilled version performs
worse than the nondistilled one. By keeping the skills separate, our
navigation module is able to detect and exploit the strengths of each
individual skill, for example, when it uses the jumping policy to turn
the robot on the spot in narrow passages. This would not be possible
with a distilled policy without performing a careful dataset curation.
Also, in our current setup with height scans for locomotion policies,

Table 1. Comparison of the navigation policy’s performance against a
manually hard-coded trajectory.

Terrain Ours Manual

Fig. 5A 98.2% 95.3%

Fig. 5B 96.3% 60.9%

Fig. 5C 97.6% 75.3%

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

10 of 14

a distilled policy could not distinguish between a box and a table
and thus would not be able to learn the crouching skill. A more so-
phisticated perceptive input, such as depth cameras, or the latent
tensor of the perception module could be used, but this would

substantially increase training times and require a delay compensa-
tion mechanism as described in Supplementary Results “Ablation of
the measurement delay compensation.” However, combining differ-
ent skills to generate new types of motions is an important venue for

Fig. 7. Terrain reconstructions for different scenarios (real-world data). (A to D) The first column shows the point cloud measurements, the second shows the baseline
elevation map (39) viewed as a point cloud, and the last corresponds to the reconstruction with our method. For our method, we show the coarse-resolution output in
blue and the high-resolution output (refinement process) in red.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

11 of 14

future research that could address some of the limitations that we
raise in the next section.

Current limitations
The pipeline has some limitations that remain to be tackled for de-
ployment in realistic and unstructured scenarios. First, the scalabil-
ity of the method to more diverse scenarios remains to be tested, for
example, in unstructured scenes. We showcase the system’s capabili-
ties in a limited range of scenarios, using a handful of distinct mod-
ules within the environment. To scale complex environments, such
as a collapsed building or even a real parkour course, the robot
would be required to perceive, navigate, and cross a wider variety of
obstacles. We can always train more low-level skills, provide more
data to the perception module, and train the navigation module in
more diverse scenarios, but it remains to be seen how well these dif-
ferent modules can generalize to completely new scenarios.

Furthermore, training the whole pipeline can be time consuming
because it uses a total of eight neural networks, each requiring sepa-
rate tuning. Some of them are interdependent, meaning that modi-
fying one requires retraining the others. For instance, the navigation
module can only receive the latent tensor of the specific perception
module it was trained on and has to use the same locomotion poli-
cies. In turn, the perception module needs to be retrained if a skill
adopts a different motion or if a new obstacle is introduced. A pos-
sible solution would be to train the different components simultane-
ously. This would also probably improve performance because the
skills could be fine-tuned on the commands issued by the navigation
module, and the skills could further train on the parkour terrains
that are more complicated than the ones used during locomotion
training. However, it is not straightforward to achieve such fine-
tuning with our delayed position-based rewards because the pose
commands of the locomotion policies and their corresponding tim-
er are constantly overridden by the navigation module.

Last, because the navigation module must make a series of correct
decisions to reach the goal, with many possibilities leading to failure,
the algorithm requires many iterations to converge. We developed a
specific curriculum to overcome this limitation. Without this step, the
robot struggles to discover the correct behaviors and gets stuck in
front of larger obstacles. A possible solution would be to pretrain
the navigation module using expert demonstrations, for example,
by finding candidate solutions with a brute-force search. Although
further research is needed to address these limitations, our ap-
proach serves as a promising foundation for future work, demon-
strating substantial progress in legged robot capabilities on challenging
terrains.

MATERIALS AND METHODS
Overview
The goal of the agent is to navigate and locomote in an environment
to reach a specific target location within a short amount of time. We
constrained the task to different configurations of pallet-sized boxes
(see Fig. 5), allowing us to keep the main challenges of agile naviga-
tion in a feasible, structured, and repeatable scenario.

Each scenario showcases different capabilities of the pipeline.
Scenario A demonstrates the general applicability to realistic but
relatively constrained scenarios. The navigation module has to un-
derstand the capabilities of the locomotion skills and choose the
path accordingly. Although the obstacle arrangements are fairly

constrained, the robot can start anywhere on the terrain and must
choose different paths depending on the target location and obstacle
parameters. On the other hand, scenario B shows generalization to
more randomized scenarios with different platform shapes and ob-
stacle arrangements. The sequence of obstacles leads to various cases
that the navigation and perception modules must learn to handle
correctly. Last, scenario C allows us to force the robot to climb on
the obstacles without having to recreate a high winding platform
with gaps on either side for real-world deployment.

Pipeline
The pipeline consists of three learning-based modules, which are
described in the following subsections. Supplementary Methods de-
fine the observations, actions, and rewards of the locomotion and
navigation policies and provide further implementation details.
Perception module
The perception module operates at 30 Hz and endows the robot with
scene understanding. The navigation and locomotion modules both
use its output to make path planning, policy selection, foothold
placement, and contact decisions. It ingests noisy and heavily oc-
cluded point clouds of the scene coming from depth cameras and
LiDAR to produce a 3D estimate of the terrain centered around the
robot as well as a compact latent representation of the scene. Similar
to (37), the point cloud data are spatially and temporally processed
using a fully convolutional encoder-decoder network architecture.
The encoder takes in the point cloud and compresses it into a com-
pact representation that is used by the decoder to complete the miss-
ing information and filter out noise.

To prepare the input, the measurements were first converted to a
voxel grid around the robot. In each occupied voxel, a feature de-
scribes the position of the centroid of the points that fall within that
voxel, and the features of unoccupied voxels were set to 0. Despite
the sparse implementation used in (37), the library did not scale well
to the typical batch sizes required for reinforcement learning. Unex-
pectedly, a dense formulation can handle such a large batch size with
satisfactory speeds, but this comes at the cost of high memory re-
quirements (approximately 45 GB of GPU memory for a batch size
of 4096). The decoder outputs the voxel occupancy probability and
the position of the centroid for each cell. The reconstructed point
cloud can then be recovered by pruning the cells whose occupancy
probability is below a user-defined threshold. Contrary to (37), no
skip connections were used to produce a more informative latent
that the navigation module can directly use. Although this might
limit the generalization performance, we found that it worked well
for our task with randomized parkour worlds.

To balance the trade-off between reconstruction accuracy and
map size, we used a multi-resolution scheme consisting of two such
networks at different scales (see Fig. 2). First, a coarse-resolution net-
work operates on a 32-by-32-by-32 grid with a voxel size of 12.5 cm
(4-m map size), allowing for a broad view of the scene. This network
also benefits from an auto-regressive feedback, where the previous
output is transformed into the current frame and concatenated with
the measurement. This allows the module to accumulate evidence
over time and reconstruct parts of the scene that are no longer visible.
For example, when the robot passes below a table, the module can use
the aggregated information from previous frames to estimate the lay-
out of the table and reconstruct the top surface, even if it is currently
not visible to the sensors. This is also necessary with certain maneu-
vers, such as climbing, where the robot’s limbs often block a large

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

12 of 14

portion of the left and right cameras; see Supplementary Methods
“Measurement blind spots.” The resulting latent tensor of dimension 2
by 2 by 2 by 64 is directly fed to the navigation module’s policy as a
flattened input. It represents the belief state of the scene because it is
trained to contain all the information to reconstruct the partially ob-
servable world. Second, a high-resolution network operates on a
32-by-32-by-32 grid with a voxel size of 6.25 cm (2-m map size), al-
lowing for better quality reconstruction near the robot because this
region is essential for locomotion and proper foothold placement.
Rather than using an auto-regressive feedback, this network uses the
features of the coarse-resolution network’s last layer as input along
with the point cloud measurements. The point cloud output of this
network is converted to an elevation map and sent to the locomo-
tion module.

We trained these networks in an unsupervised fashion from
simulated data on a total of 2000 trajectories with 100 time steps
each. We equally split the dataset across the different parkour sce-
narios. The occupancy and centroid outputs were trained using a
binary cross-entropy loss and the Euclidean distance to the ground
truth, respectively. We followed the same data augmentation proce-
dure described in (37). It consists of perturbing the position of the
points, adding random blobs, removing patches of points, and
noisifying the robot’s position. We found experimentally that it was
necessary to add randomized objects (walls and additional boxes)
around the terrains during training to enhance reconstruction per-
formance and to allow deployment in closed rooms and cluttered
environments.
Locomotion module
The locomotion module is an interface that exposes the low-level
skills to the rest of the pipeline and operates at 50 Hz. It contains a
catalog of policies that can be activated by the navigation module,
each trained for a specific locomotion skill: walking, climbing up,
climbing down, crouching, and jumping. These skills were trained
using reinforcement learning and output joint position commands
for the motors.

As input, the policies receive the current proprioceptive state, a
local map of the surrounding terrain, a position and heading com-
mand, a timer, and output position commands to the motors. The
training setup resembles (11) and uses position-based commands.
Instead of tracking velocity commands, the robot has to reach a tar-
get position and heading within a given time. The timer input indi-
cates how much time is left to reach the commanded position and
adopt the right heading. The tracking reward is only activated when
the timer is over, meaning that the robot can modulate its motion
freely along the trajectory. The skills are trained separately and share
the observation and action spaces but require different flavors of re-
wards and termination conditions to be trained efficiently. Further-
more, we implemented symmetry augmentations and found that
they solved the asymmetry issues reported in (11) and led to more
robust policies. We describe this procedure in Supplementary Meth-
ods “Symmetric data augmentation for locomotion training.”

The navigation module receives a full 3D representation of the
scene, i.e., the latent tensor, but such a representation is impractical
for the locomotion policies because of their high update rate and the
corresponding computational cost during training. Instead, they per-
ceive the environment using a set of height measurements around the
robot computed from the elevation map coming from the perception
module. During training, these height measurements can be efficient-
ly computed using ray-casting, bypassing the need to render all the

cameras and infer the perception module, which substantially im-
proves training times, as described in Supplementary Methods “Im-
plementation details.” In addition, delays in the perception pipeline,
which negatively influence the skill’s performance (see Supplementa-
ry Results “Ablation of the measurement delay compensation”), can
be directly compensated for. The locomotion module registers the
maps it receives in the world frame, and between map updates, the
height scans for the skills are computed at the robot’s estimated loca-
tion in the world-registered map. Such compensation would not be
possible to achieve if the skills were to use the latent directly.

To bridge the reality gap, we perturbed the height measurements
during training by adding noise to individual points and shifting the
map up to 7.5 cm in all directions. This forces the policies to adopt
safer behavior in critical situations. During a climb-down motion,
for example, the robot first slides down on its shanks until the knees
hit the edge of the box. The motion is less dependent on accurate
foothold placement, which improves robustness to slight imperfec-
tions in the map reconstructions.

Navigation module
The navigation module guides the robot around the scene to reach
the target within the allocated time. It was trained in a hierarchical
reinforcement learning setup consisting of an outer loop running
the navigation policy at 5 Hz and an inner loop running the locomo-
tion module at 50 Hz. The locomotion policies of the inner loop
were frozen throughout training. At every high-level time step, the
navigation policy receives the relative position of the goal to reach,
the remaining time to accomplish the task, the robot’s base velocity,
orientation, and the flattened latent tensor of the perception mod-
ule. The input to the policy is formed by concatenating these values.
It then selects a locomotion skill and guides the latter with a local
position, heading, and timer command. As mentioned in the previ-
ous section, the timer command informs the skill when it has to
comply with the position and heading command. By changing the
timer output, the navigation policy can give the skill a sense of ur-
gency. The navigation policy must carefully combine and adjust the
time, position, and heading commands to achieve the desired mo-
tion. Similar to the skills’ training setup, we used the time-dependent
command formulation described in (11). The agent is given a fixed
time to reach the goal, and the distance-to-goal penalty is only acti-
vated when the time is over. This sparse formulation allows the pol-
icy to explore the terrain to find safer paths and take its time where
needed. The episode is also terminated if the robot falls or the con-
tact forces are too high. To speed up convergence, we used a cur-
riculum where we first placed the global targets close to the robots’
starting positions and then moved them farther away on the terrain
as the reward increased.

To accommodate for the formulation, we modified the PPO al-
gorithm and augmented the actor’s multilayer perceptron with a
hybrid output. The last layer’s features are split to form a Gaussian
distribution for the commands and a categorical distribution for
skill activation. The categorical distribution assigns a selection prob-
ability for each of the low-level skills. During training, the actions
were sampled from the respective distributions to enable explora-
tion. On deployment, we use the mean of the Gaussian and select
the policy with the highest assigned probability. Although this hy-
brid formulation adds a new hyperparameter to the algorithm to
scale the entropy coefficient of each distribution, we found empiri-
cally that this does not make training more complex.

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

13 of 14

Compared with other approaches such as (27), which deploy
simplified kinematic models in the inner loop, rolling out the actual
low-level policies during training is necessary to perform agile navi-
gation. The agent can make informed decisions taking into account
the mode of operation, the capabilities, and the limitations of each
low-level controller. It can infer when a box is too high to climb on
and first move toward a lower one. It carefully places the target on
narrow passages to enable fine-grained foot placement. It favors the
climb-down policy on lower boxes, to step down to avoid high con-
tact forces. Similar to the perception module, we add random per-
ceptive distractors during training (walls and boxes) to improve the
generalization of the policy to enclosed and cluttered rooms.

Supplementary Materials
This PDF file includes:
Methods
Results
Figs. S1 to S7
Tables S1 to S7
Legends for movies S1 to S5
References (41–43)

Other Supplementary Material for this manuscript includes the following:
Movies S1 to S5

REFERENCES AND NOTES
	 1.	 R. Grandia, F. Jenelten, S. Yang, F. Farshidian, M. Hutter, Perceptive locomotion through

nonlinear model predictive control. arXiv:2208.08373 [quant-ph] (2022).
	 2.	 F. Jenelten, R. Grandia, F. Farshidian, M. Hutter, TAMOLS: Terrain-aware motion

optimization for legged systems. T-RO 38, 3395–3413 (2022).
	 3.	 D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, S. Kim, Vision aided dynamic

exploration of unstructured terrain with a small-scale quadruped robot, in 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris, France, August 2020
(IEEE, 2020), pp. 2464–2470.

	 4.	T . Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter, Learning robust perceptive
locomotion for quadrupedal robots in the wild. Sci. Robot. 7, eabk2822 (2022).

	 5.	A . Loquercio, A. Kumar, J. Malik, Learning visual locomotion with cross-modal
supervision, In 2023 International Conference on Robotics and Automation (ICRA)
(IEEE, 2023), pp. 7295–7302.

	 6.	 S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, I. Havoutis, Rloc: Terrain-aware
legged locomotion using reinforcement learning and optimal control. T-RO 38,
2908–2927 (2022).

	 7.	 M. H. Raibert, Legged Robots That Balance (MIT Press, 1986), pp. 1–89.
	 8.	 D. Kim, J. D. Carlo, B. Katz, G. Bledt, S. Kim, Highly dynamic quadruped locomotion via

whole-body impulse control and model predictive control. arXiv:1909.06586 (2019).
	 9.	 Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, S. Kim, Optimized jumping on the MIT Cheetah

3 robot, in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, May 2019 (IEEE, 2019), pp. 7448–7454.

	 10.	 H.-W. Park, P. M. Wensing, S. Kim, Jumping over obstacles with MIT Cheetah 2. Robot.
Auton. Syst. 136, 103703 (2021).

	 11.	N . Rudin, D. Hoeller, M. Bjelonic, M. Hutter, Advanced skills by learning locomotion and
local navigation end-to-end, in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Kyoto, Japan, October 2022 (IEEE, 2022), pp. 2497–2503.

	 12.	N . Rudin, H. Kolvenbach, V. Tsounis, M. Hutter, Cat-like jumping and landing of legged
robots in low gravity using deep reinforcement learning. IEEE Trans. Robot. 38, 317–328
(2022).

	 13.	 S. H. Jeon, S. Kim, D. Kim, Real-time optimal landing control of the MIT Mini Cheetah.
arXiv:2110.02799 [cs.RO] (2021).

	 14.	 J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, M. Hutter, Learning
agile and dynamic motor skills for legged robots. Sci. Robot. 4, eaau5872 (2019).

	 15.	 Y. Ma, F. Farshidian, M. Hutter, Learning arm-assisted fall damage reduction and recovery
for legged mobile manipulators. arXiv:2303.05486 [cs.RO] (2023).

	 16.	 S. Bohez, S. Tunyasuvunakool, P. Brakel, F. Sadeghi, L. Hasenclever, Y. Tassa, E. Parisotto,
J. Humplik, T. Haarnoja, R. Hafner, M. Wulfmeier, M. Neunert, B. Moran, N. Siegel, A. Huber,
F. Romano, N. Batchelor, F. Casarini, J. Merel, R. Hadsell, N. Heess, Imitate and repurpose:
Learning reusable robot movement skills from human and animal behaviors.
arXiv:2203.17138 [cs.RO] (2022).

	 17.	 Y. Ji, G. B. Margolis, P. Agrawal, Dribblebot: Dynamic legged manipulation in the wild, in
2023 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2023),
pp. 5155–5162.

	 18.	 J. Siekmann, K. Green, J. Warila, A. Fern, J. Hurst, Blind bipedal stair traversal via
sim-to-real reinforcement learning, in Proceedings of Robotics: Science and Systems XVII,
D. A. Shell, M. Toussaint, M. A. Hsieh, Eds. (RSS, 2021); www.roboticsproceedings.org/
rss17/p061.html.

	 19.	 Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, K. Sreenath, Robust and versatile bipedal
jumping control through multi-task reinforcement learning. arXiv:2302.09450 [cs.RO] (2023).

	 20.	 S. Karaman, E. Frazzoli, Sampling-based algorithms for optimal motion planning. Int. J.
Robot. Res 30, 846–894 (2011).

	 21.	 S. Tonneau, A. Del Prete, J. Pettré, C. Park, D. Manocha, N. Mansard, An efficient acyclic
contact planner for multiped robots. T-RO 34, 586–601 (2018).

	 22.	L . Wellhausen, M. Hutter, Rough terrain navigation for legged robots using reachability
planning and template learning, in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Prague, Czech Republic, October 2021 (IEEE, 2021), pp.6914–6921.

	 23.	 M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, C. Cadena, From perception to decision: A
data-driven approach to end-to-end motion planning for autonomous ground robots, in
IEEE International Conference on Robotics and Automation (ICRA), Singapore, June 2017
(IEEE, 2017), pp. 1527–1533.

	 24.	E . Kaufmann, A. Loquercio, R. Ranftl, A. Dosovitskiy, V. Koltun, D. Scaramuzza, Deep drone
racing: Learning agile flight in dynamic environments, in Proceedings of the 2nd
Conference on Robot Learning (PMLR), A. Billard, A. Dragan, J. Peters, J. Morimoto, Eds.
(MLResearchPress, 2018), pp. 133–145.

	 25.	 F. Sadeghi, S. Levine, CAD2RL: Real single-image flight without a single real image, in
Proceedings of Robotics: Science and Systems XIII, N. Amato, S. Srinivasa, N. Ayanian,
S. Kuindersma, Eds. (RSS, 2017); www.roboticsproceedings.org/rss13/p34.html.

	 26.	 F. Sadeghi, DIVIS: Domain invariant visual servoing for collision-free goal reaching, in
Proceedings of Robotics: Science and Systems XV, A. Bicchi, H. Kress-Gazit, S. Hutchinson,
Eds. (RSS, 2019); www.roboticsproceedings.org/rss15/p55.html.

	 27.	 D. Hoeller, L. Wellhausen, F. Farshidian, M. Hutter, Learning a state representation and
navigation in cluttered and dynamic environments. IEEE Robot. Autom. Lett. 6, 5081–5088
(2021).

	 28.	 G. Kahn, P. Abbeel, S. Levine, BADGR: An autonomous self-supervised learning-based
navigation system. arXiv:2002.05700 (2020).

	 29.	B . Yang, L. Wellhausen, T. Miki, M. Liu, M. Hutter, Real-time optimal navigation planning
using learned motion costs, in 2021 IEEE International Conference on Robotics and
Automation (ICRA), Xi'an, China, June 2021 (IEEE, 2021), pp. 9283–9289.

	 30.	 X. B. Peng, Y. Guo, L. Halper, S. Levine, S. Fidler, ASE: Large-scale reusable adversarial skill
embeddings for physically simulated characters. TOG 41, 1–17 (2022).

	 31.	 J. Merel, A. Ahuja, V. Pham, S. Tunyasuvunakool, S. Liu, D. Tirumala, N. Heess, G. Wayne,
Hierarchical visuomotor control of humanoids, paper presented at ICLR 2019: The Seventh
International Conference on Learning Representations, New Orleans, USA, 6 to 9 May 2019.

	 32.	C . Yang, K. Yuan, Q. Zhu, W. Yu, Z. Li, Multi-expert learning of adaptive legged locomotion.
Sci. Robot. 5, eabb2174 (2020).

	 33.	 K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman, K.-H. Lee, L. Lee, S. Saliceti,
V. Zhuang, N. Batchelor, S. Bohez, F. Casarini, J. E. Chen, O. Cortes, E. Coumans,
A. Dostmohamed, G. Dulac-Arnold, A. Escontrela, E. Frey, R. Hafner, D. Jain, B. Jyenis,
Y. Kuang, E. Lee, L. Luu, O. Nachum, K. Oslund, J. Powell, D. Reyes, F. Romano, F. Sadeghi,
R. Sloat, B. Tabanpour, D. Zheng, M. Neunert, R. Hadsell, N. Heess, F. Nori, J. Seto,
C. Parada, V. Sindhwani, V. Vanhoucke, J. Tan, Barkour: Benchmarking animal-level agility
with quadruped robots. arXiv:2305.14654 [cs.RO] (2023).

	 34.	 R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, A. Giusti, Learning ground traversability
from simulations. IEEE Robot. Autom. Lett. 3, 1695–1702 (2018).

	 35.	 H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, J. Nieto, Voxblox: Incremental 3D Euclidean
signed distance fields for on-board MAV planning, in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, September 2017 (IEEE,
2017), pp. 1366–1373.

	 36.	A . Agarwal, A. Kumar, J. Malik, D. Pathak, Legged locomotion in challenging terrains using
egocentric vision, in Proceedings of the 6th Annual Conference on Robot Learning (PMLR),
K. Liu, D. Kulic, J. Ichnowski, Eds. (MLResearchPress, 2022), pp. 403–415.

	 37.	 D. Hoeller, N. Rudin, C. Choy, A. Anandkumar, M. Hutter, Neural scene representation for
locomotion on structured terrain. IEEE Robot. Autom. Lett. 7, 8667–8674 (2022).

	 38.	N . Rudin, D. Hoeller, P. Reist, M. Hutter, Learning to walk in minutes using massively
parallel deep reinforcement learning, in Proceedings of the 5th Conference on Robot
Learning (PMLR), A. Faust, D. Hsu, G. Neumann, Eds. (MLResearch Press, 2022),
pp. 91–100.

	 39.	T . Miki, L. Wellhausen, R. Grandia, F. Jenelten, T. Homberger, M. Hutter, Elevation mapping
for locomotion and navigation using GPU, in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (IEEE, 2022), pp. 2273–2280.

	 40.	 P. Fankhauser, M. Bloesch, M. Hutter, Probabilistic terrain mapping for mobile robots with
uncertain localization. IEEE Robot. Autom. Lett. 3, 3019–3026 (2018).

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

http://www.roboticsproceedings.org/rss17/p061.html
http://www.roboticsproceedings.org/rss17/p061.html
http://www.roboticsproceedings.org/rss13/p34.html
http://www.roboticsproceedings.org/rss15/p55.html

Hoeller et al., Sci. Robot. 9, eadi7566 (2024) 13 March 2024

S c i e n c e R o b o t i c s | R e s e a r c h Ar t i c l e

14 of 14

	 41.	 M. Macklin, Warp: A High-Performance Python Framework for GPU Simulation and
Graphics (NVIDIA GPU Technology Conference, 2022); www.nvidia.com/en-us/
on-demand/session/gtcspring22-s41599/.

	 42.	 V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A.
Allshire, A. Handa, G. State, Isaac gym: High performance GPU based physics simulation
for robot learning, in Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1 (Round 2), J. Vanschoren, S. Yeung, Eds. (NeurIPS, 2021).

	 43.	 F. Abdolhosseini, H. Y. Ling, Z. Xie, X. B. Peng, M. Van de Panne, On learning symmetric
locomotion, in Proceedings of the 12th ACM SIGGRAPH Conference on Motion, Interaction
and Games (ACM, 2019), pp. 1–10.

Acknowledgments
Funding: The project was funded by NVIDIA, the Swiss National Science Foundation (SNF)
through the National Centre of Competence in Research Robotics, and the European

Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
program grant agreement nos. 852044 and 780883. The work has been conducted as part of
ANYmal Research, a community to advance legged robotics. Author contributions: D.H. and
N.R. developed and implemented the method. D.S., D.H., and N.R. conducted the experiments
and designed and constructed the obstacle courses. D.H., N.R., and M.H. refined ideas and worked
on the manuscript. Competing interests: The authors declare that they have no competing
interests. Data and materials availability: All data needed to support the conclusions of this
manuscript are included in the main text or Supplementary Materials. The datasets and codes
to generate Fig. 3 and Fig. 4 are available at https://doi.org/10.5281/zenodo.10638996.

Submitted 30 May 2023
Accepted 16 February 2024
Published 13 March 2024
10.1126/scirobotics.adi7566

D
ow

nloaded from
 https://w

w
w

.science.org at E
PF L

ausanne on Septem
ber 23, 2024

https://doi.org/10.5281/zenodo.10638996

	ANYmal parkour: Learning agile navigation for quadrupedal robots
	INTRODUCTION
	Related work

	RESULTS
	Locomotion module
	Jumping
	Climbing down
	Climbing up
	Crouching
	Walking
	Navigation module
	Perception module

	DISCUSSION
	Current limitations

	MATERIALS AND METHODS
	Overview
	Pipeline
	Perception module
	Locomotion module

	Navigation module

	Supplementary Materials
	This PDF file includes:
	Other Supplementary Material for this manuscript includes the following:

	REFERENCES AND NOTES
	Acknowledgments
	AbstractOne-sentence summary:
	Editor’s summary

